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Writing parallel programs is difficult. Besides the inherent difficulties associ-
ated with writing any kind of software, parallel programs have additional complex-
ities due to data management, process management, and process synchronization.
Further, even the basic activities involved in writing and using parallel programs
are often more difficult than those same activities on a conventional, uniprocessor
computer. Some of this difficulty is due to the traditional dearth of tools for parallel
programming and parallel computing. Early users of parallel systems had to write
their own tools from scratch, sometimes even including basic system software. Some
features, such as robust, fast file systems, were simply unavailable.

Today the situation is quite different. While parallel computing environments
are still not as easy to use or as robust as workstation environments, great strides
have been made in improving parallel computing for end users. These improved
environments have been driven by the rapid expansion in the number of parallel
computers and the number of people using them (enabled in large part by the ex-
ploitation of commodity components, e.g., by the Beowulf project [8]). Similarly,
improved parallel programming has been enabled by the development of a standard
programming model and applications programmer interface for developing paral-
lel scientific applications. The Message Passing Interface (MPI) standard [3, 5, 6]
allows the development of both parallel programs and parallel libraries. By sup-
porting software libraries, MPI allows programmers to build applications in terms
of the natural operations for their application, such as solving a system of nonlinear
equations, rather than low-level, specialized parallel programming commands. As
a result, an active community of builders and users of parallel tools has arisen.

This chapter surveys the categories of tools useful for parallel computing and
briefly describes some particular tools in each category. Section 0.1 describes soft-
ware and tools that can be used to set up and manage a parallel computing cluster.
Section 0.2 focuses on tools for computational science, including numerical libraries,
software environments, and complete applications.

Many tools and environments are already available; no single chapter (or even
book!) could list them all. We cover some of the most widely used open-source and
research tools, with particular emphasis on tools that were featured at the 2004
SIAM Conference on Parallel Processing for Scientific Computing. (The presence
or absence of any tool in our survey should not be considered as an endorsement or
otherwise. To be fair, we have not specifically named commercial products.) New
tools are being developed, and existing tools continue to evolve; we encourage users
to ask others what tools they use and to search the Web for new developments.

0.1 Software and Tools for Building and Running
Clusters

In the early days of cluster computing, building a cluster meant ordering boxes
of computers, unpacking them, loading software onto each one, and then writing
custom code to manage the collection of machines as a parallel computer. Today
one can order a cluster, complete with all of the software needed to operate it, from
a vendor who will install it, test it, and service it. Understanding the different
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system tools available for clusters is still necessary, however, and those who choose
to build their own cluster (still often the best choice for small clusters) will need to
acquire the tools that operate the cluster and allow users to build and run programs.
This section can only touch on these tools; a cluster reference such as [4, 7] will
provide a more thorough discussion.

Setting up and running a cluster involves three aspects:

Node Configuration: How will each individual node be configured (e.g,. what
operating system and what software will go on each node)?

Cluster Configuration: How will the individual nodes be connected and config-
ured together to make up a parallel computing resource?

Cluster Management: How will the individual nodes and the cluster configura-
tion be managed over time (e.g., how will new software be installed and how
will jobs be submitted)?

0.1.1 Node Configuration

Clusters comprise a collection of individual computers. An important aspect of
cluster setup is therefore the configuration of each of those nodes in the cluster.

Operating System. The most fundamental choice in setting up individual cluster
nodes is the operating system. Linux is a common choice in many cases. Linux
distributions are available from a number of providers, and the cost of acquisition is
typically quite low (often free). Linux has been ported to the various microproces-
sors that are used in computational clusters, including new 64-bit architectures.
Because of the popularity and ubiquity of Linux, a large selection of software pack-
ages is available for it (in source and packaged binary form), including most of
the tools for parallel computing that are mentioned in this chapter. There are a
huge number of Linux distributions (both well known and obscure). Some of the
more widely used distributions for cluster computing are RedHat, Debian, SuSE,
Fedora, Mandrake, Gentoo, and Yellowdog. In choosing a distribution, one should
consider issues such as ease of installation, availability of support, availability of
packaged software, and compatibility with specialized hardware, such as high-speed
interconnects.

Compilers and Debuggers. In order to develop programs, compilers are needed.
The freely available GNU compilers support all of the popular languages in scientific
computing (including Fortran 95 with the recent release of g95). Higher performance
and additional features, such as support for the OpenMP standard [1], are available
from a range of commercial compiler vendors. Program development tools, including
commercial parallel debuggers, are also available.

Sequential Libraries. High levels of parallel performance depend on high levels of
sequential performance. Many hardware vendors provide highly tuned versions of



sequential libraries such as the BLAS. Many of the BLAS routines are also available
as part of the ATLAS project, which uses automatic tuning techniques to provide
performance equal to vendor-tuned BLAS in many cases.

0.1.2 Cluster Configuration

Beyond the configuration of each individual node, an important aspect of cluster
setup is the infrastructure that allows the collection of nodes to work together
effectively as a cluster.

Network Architecture. The nodes in a computational cluster will almost certainly
be equipped out of the box with 100 Mbit /s or even (as is becoming more and more
common) 1 Gbit/s Ethernet. This network will be used for cluster administration
and most cluster services (such as basic NFS file sharing, directory services, and
remote login). One important decision is whether to make this a public network
or a private network (having public or private IP addresses, respectively). With
private addressing, the cluster accesses the public Internet via a gateway machine
or router, and this setup can provide certain security and administrative benefits.

For some classes of computational problems, Ethernet may offer sufficient per-
formance. In many cases, however, one will want to add a second high-performance
network such as Myrinet, Infiniband, or Quadrics to explicitly support communi-
cation for parallel computing. Also desirable will be the availability of an MPI
library that is ported (and tuned) for the selected interconnect. Hardware ven-
dors providing high-performance interconnects may also provide a corresponding
MPI implementation. Several of the open-source implementations support these
interconnects as well.

Basic Services. The nodes in a cluster will need basic services such as shared
file systems, directory services, gateway services, and cluster administration. For
reasons of symmetry (and load balancing), it is best not to use for this purpose
nodes that will also be used to run compute jobs. Rather, some number of “head
node” servers should be apportioned to handle such services. The exact ratio of
service nodes to compute nodes will depend on individual needs, but typically one
could expect to support 8 to 32 compute nodes with a single service node.

File System. Any computer needs a file system on which to store data. Unix-
base (including Linux-based) clusters will usually provide the Network File System
(NFS). This is the system commonly used on Unix desktop workstations and Unix
servers and is often a good choice as the file system for source files. NFS may
be a poor choice for use by parallel applications, however, because it was not de-
signed to support multiple processes accessing (particularly writing to) the same
file. For I/O to and from parallel applications, a parallel file system should be used.
There are a number to choose from, including freely available (such as PVFS2) and
commercially supported, such as Lustre (www.clusterfs.com), GPFS (www-1.ibm.
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com/servers/eserver/clusters/software/gpfs.html), Panasas (www.panasas.
com), and GFS (www.redhat.com/software/rha/gfs).

Middleware. Parallel programs require support for a parallel programming model.
While some parallel languages are available with compilers for clusters, most users
in computational science use the Message Passing Interface standard. This standard
describes a library of routines that allow processes running on different nodes to
communicate and coordinate. There are a number of implementations of the MPI
standard; any application that uses MPI may be compiled with the mpi header
files provided by the implementation and linked with the MPI library provided by
the implementation. Thus, one can use any MPI implementation with any MPI
program. Popular MPI implementations are MPICH2 (www.mcs.anl.gov/mpi/
mpich2/) and LAM/MPI (www.lam-mpi.org); another implementation, OpenMPI
(www.open-mpi.org), should be available when this book is released. Commercial
implementations of MPI are also available.

0.1.3 Cluster Management

Once a cluster is up and running, various on-going administrative tasks and policies
must be attended to.

Scheduling. A cluster will typically be a shared resource with multiple users. The
computational resources for a parallel job should be considered together and allo-

cated as a single resource. Inadvertently sharing even a single node between parallel

jobs can cause severe load-balancing problems for those jobs. Manually managing

the use of multiple compute nodes (which in a cluster are also essentially worksta-

tions) is extraordinarily difficult when even moderate numbers of users and nodes are

involved. The most effective way to allocate groups of nodes for exclusive use is via

a batch scheduler. Popular batch schedulers include OpenPBS (www . openpbs.org),

Torque (http://www.clusterresources.com/pages/products/torque-resource-manager.
php), and SLURM (www.1lnl.gov/linux/slurm).

Integrated Node and Cluster Configuration Management. In a cluster, each
node (typically a single PC) needs to have an operating system loaded onto it; the
node must also be configured to use the interconnection network that allows the
nodes to communicate with each other.

Setting up the individual nodes one by one in a cluster of any size can be a
tedious and error-prone task (as would be upgrading a cluster in such a fashion).
Fortunately, tools exist to automate this process as well as to automate the process
of transforming a collection of nodes into an integrated cluster. Three popular tools
are

ROCKS (rocks.npaci.edu/Rocks),
OSCAR (oscar.openclustergroup.org), and

Cplant www.cs.sandia.gov/cplant.
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These packages represent different approaches to the management of cluster
system software. ROCKS is a description-based method. This approach uses tools
built into the operating system to describe and assemble the software needed for
each node. The advantage of this approach is that it works well with nearly any
hardware; but because it is built atop installation tools in an operating system, it
limits the choice of operating system. In the case of ROCKS, only certain Linux
distributions are allowed.

OSCAR is a disk image-based method. This approach uses a custom installa-
tion program to build a disk image that can then be copied to all of the nodes in the
cluster. This approach allows greater flexibility in the choice of operating system
(some, such as the Chiba City system, allow both Windows and Linux to be used),
but may limit the choice of hardware (such as disks or new network interfaces).

Cplant is provided as source code and contains a complete environment tar-
geted at scalability, including runtime utilities and debugging support.

Regardless of which toolkit chosen, when a cluster management system finishes
its initial setup process, the computational cluster will be ready to use. And, since
these toolkits are aimed at supporting high-performance science computing, the
cluster as initially configured will include the other system software components
discussed above.

One of the reasons for the success of clusters has been the ability to take
advantage of commodity components. This is most obvious in hardware, but it is
also true in software. There are multiple commodity operating systems, compil-
ers, file systems, MPI implementations, and parallel programming environments.
However, not all of these tools work together seamlessly—particularly the tools
that manage the cluster. The Scalable Systems Software project (www.scidac.
org/ScalableSystems), part of the DOE SciDAC (Scientific Discovery through
Advanced Computing) program, seeks to develop standards for interfaces between
system software components to enable the development of new functionalities.

0.2 Tools for Computational Science

Many tools are available for all conducting all phases of computational science on
clusters. Many of the chapters in this book discuss particular tools in depth; in
this chapter, we briefly summarize some of the available tools. Tools chosen for
this section were described at the 2004 STAM Parallel Processing conference in one
or more talks. Not all tools are included, and many other tools are available for
clusters. This section is intended to give a sampling that illustrates the breadth of
tools available for parallel computing. The section is organized by category, starting
with software libraries for solving linear and nonlinear equations.

0.2.1 Solvers for Linear and Nonlinear Equations

The development of solvers for linear and nonlinear systems of equations for parallel
computers is as old as parallel computers themselves. As a result, many mature
and efficient libraries are available for these problems. Chapters 77 and 77 discuss
the state of the art in these areas.
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Following are some of the tools featured at the 2004 STAM meeting on parallel
processing, along with a URL that gives access to more data and to the software.

e pARMS (http://www-users.cs.umn.edu/~saad/software/pARMS) provides
preconditioned Krylov solvers for linear systems, using recursive multilevel
ILU preconditioning.

e Prometheus (www.cs.berkeley.edu/~madams/prometheus) is a scalable un-
structured finite element solver employing multigrid.

e SuperLU (crd.1bl.gov/~xiaoye/SuperLU) is a sparse direct linear solver,
with versions for nonparallel machines, shared memory and distributed mem-
ory.

e PETSc (www.mcs.anl.gov/petsc) is a package for solving linear and non-
linear systems of equations, emphasizing support for equations from PDE
discretizations.

e hypre (www.11lnl.gov/CASC/linear_solvers) provides parallel precondition-
ers featuring multigrid.

e Petra is part of Trilinos (software.sandia.gov/trilinos) and provides the
basic linear algebra support such as parallel sparse matrix operations.

e PLAPACK (www.cs.utexas.edu/users/plapack) is a parallel dense linear
algebra package.

e ScaLAPACK (www.netlib.org/scalapack/scalapack_home.html) is another
parallel dense linear algebra package.

In evaluating libraries, beyond the usual issues of correctness and accuracy,
one should consider completeness and interoperability. While these terms are not
precise, they describe important qualitative properties of a library. A library is
complete if it provides all of the routines needed to create and use the data structures
that it needs. For example, a sparse matrix library is not complete if there are no
routines to help assemble the sparse matrix data structures. Libraries that are not
complete in this sense require more effort to use.

Interoperability is the property that allows an application to use multiple li-
braries. Some libraries and tools may assume that no other tools are used in the
application, an assumption that can limit the applications for which the library is
suitable.

0.2.2 Parallel Programming and Languages

Parallel programming is considered by many to be too hard. Without question,
it is more difficult than programming a single processor; moreover, writing bad
parallel programs seems to be easier than writing bad regular programs. Many
efforts have been undertaken to simplify parallel programming. One is to develop a
new, general-purpose parallel language—often, an extension of an existing language.
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For example, the partitioned global address space (PGAS) languages provide a
unified view of the entire parallel computer, rather than using MPI to connect
otherwise separate programs on each node. Important examples of these languages
are Unified Parallel C (UPC, upc.gwu.edu) and CoArray Fortran (CAF)!. PGAS
languages have the concept of local and remote memory and hence promise efficient
implementations on clusters. Users have reported some positive experience with
these languages, but they are not yet widely available and do not always offer the
highest performance.

Another approach has been to build tools optimized for a particular domain
or class of algorithms. For example, both the language Cilk (supertech.lcs.mit.
edu/cilk) and the library MasterWorker (www.cs.wisc.edu/condor/mw) provide
good support for task-parallelism. Charm++ (charm.cs.uiuc.edu/research/
charm) also provides a programming model that supports parallelism through the
creation and management of large numbers of “virtual” tasks.

In the future, we expect to see more such tools. Domain-specific languages
are simply programming languages tuned to a particular domain and usually a par-
ticular data structure within that domain (data-structure-specific language is often
a more accurate description). These languages can take advantage of knowledge
about the domain to raise the level of abstraction and hide many of the details of
parallel programming from the user. One example is parallel-R (www.aspect-sdm.
org/Parallel-R), a parallel version of the statistical language R.

The DARPA High Productivity Computer Systems project is an important
project to watch (www.highproductivity.org). This project seeks to develop a
combination of hardware and software (including new computer languages) to sig-
nificantly increase programmer productivity. Even if these specific efforts never
become commercial systems, the ideas developed will undoubtedly stimulate fur-
ther work in computer architecture and programming languages.

0.2.3 Performance Evaluation

Two major factors motivate the use of parallel computing: the need for more com-
puting performance and the need for more memory in which to perform the calcu-
lations. Thus, tools to identify and repair performance bugs are a critical part of
any parallel computing environment.

For most applications, most of the gap between the performance of an applica-
tion and the peak performance is due not to the parallelism but to the capabilities
of the individual nodes. Thus, tuning the single-node performance is the first and
often most important step.

An important step toward making high-quality performance evaluation pos-
sible has been the development of a set of routines that provide portable access
to the performance counters maintained by most modern CPUs. The PAPI li-
brary (http://icl.cs.utk.edu/papi) is available for many operating systems and
processors and provides such a portable interface.

Tools that work closely with the compiler or the source code can provide

1Earlier known as F--
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more context for understanding the reasons for the measured performance and
suggest ways to improve performance. Tools such as those in the HPCToolkit
(www.hipersoft.rice.edu/hpctoolkit) provide detailed information about the
behavior of an application.

Once the single-processor or single-node performance of an application has
been evaluated and tuned, one should look at the parallel performance. Most tools
for understanding the parallel performance of applications fall into two categories:
tools that create a log file of every parallel computing event, such as sending or
receiving a message, along with tools to analyze and display the contents of this
long file, and tools that create a summary of the parallel computing events, for
example, by counting the amount of data sent between two processes.

The Tuning and Analysis Utilities (TAU, www.cs.uoregon.edu/research/
paracomp/tau/tautools) is another package that provides tools for instrumenting
and analyzing applications.

Examples of logfile-based tools are Paraver (Chapter ??), SvPablo (www.
renci.unc.edu/Project/SVPablo/SvPabloOverview.htm), Jumpshot (www.mcs.
anl.gov/perfvis/software/viewers), and Vampir (now part of the Intel Cluster
Tools, www.intel.com/software/products/cluster).

Summary tools include FPMPI (www.mcs.anl.gov/fpmpi/WWW) and mpiP
(www.1lnl.gov/CASC/mpip).

The MPI standard provides support for the development of customized logging
tools through what is called the “profiling interface.” This feature of MPI provides
a way to intercept any MPI call, perform any user-specified action, and then invoke
the original MPI operation. In fact, many of the parallel performance tools use this
interface. Users that need special kinds of information should consider using the
profiling interface (a required part of all MPI implementations).

0.2.4 Problem Solving Environments

Parallel programming is not necessary in some applications areas because of the
availability of problem solving environments (PSEs). These provide substantial or
complete support for computations, turning a parallel computer into just another
source of computer cycles.

Among the PSEs featured at the SIAM 2004 parallel processing meeting were
the following:

e BioPSE (www.sci.utah.edu/ncrr/software) is a problem solving environ-
ment for biomedical problems and includes, in addition to solver and visual-
ization tools, support for computational steering.

e SCIRun (software.sci.utah.edu/scirun.html) is an environment for build-
ing problem solving environments (BioPSE is built on top of SCIRun).

e Cactus (www.cactuscode.org) is a problem solving environment supporting
the collaborative development of parallel applications in science and engineer-
ing, and is well known for work in CFD and astrophysics.
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e NWChem (www.emsl.pnl.gov/docs/nwchem/nwchem.html) is a package for
computational chemistry.

Commercial applications include fluid dynamics, structural mechanics, and
visualization. More applications can be expected because of the rapidly increasing
number of clusters provides a market for them.

0.2.5 Other Tools

Many other categories of tools exist in addition to those described above. This book,
for example, includes chapters on mesh generation (Chapter ??), component archi-
tectures for interoperable software components (Chapter ?7), and fault tolerance
(Chapter ??). Other sources of information about parallel tools and environments
include books such as [2] and [4] as well as on-line sources such as the Beowulf
list (www.beowulf.org). And, of course, using Web search engines will help one
discover new tools as they continue to be developed and deployed.

0.3 Conclusion

For many scientists and engineers, parallel computing has been made practical by
the combination of commodity hardware and commodity software, aided by the
development of standards—particularly those for parallel computing such as the
MPI standard—and a healthy competition between groups developing software and
hardware to these standards.

We close this chapter by summarizing some general recommendations for users
and developers of computational science tools for parallel computers.

For users, first and foremost: Don’t write code if you don’t need to!

1. If you are setting up your own cluster, use one of the setup tools.
2. Use a problem solving environment if possible.

3. Use one or more parallel libraries to raise the level of abstraction, essentially
turning MPI into a higher-level, domain-specific language for your application
area.

4. Use an appropriate programming model and performance tools.

For tool developers, perhaps the most important recommendation is to ensure
that your tool can interoperate with other tools. Tools should also be complete in
terms of providing not just the core algorithm but the routines or tools that get a
user from their problem description to your tool.
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